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Abstract

This survey paper explores the use of large lan-
guage models (LLMs) in generating and defending
against malware. The paper summarizes news re-
ports and research papers on how LLMs are exploited
by malicious actors (Black Hats) and used by defend-
ers (White Hats). Topics include penetration test-
ing (Red Teams), system-based and chatbot interac-
tions, and emerging quality assurance tools such as
model inversion, fuzzing, and vulnerability detection.
A unique section features a conversation with Chat-
GPT and Claude on future challenges in IT security.
The paper aims to raise awareness and provide insight
into leveraging LLMs for protection against evolving
malware threats.

1 Introduction

This is a survey paper about the use of LLMs in
the production and defense against malware. LLMs
have progressed rapidly in the past 2 years ([150],
[17], [104]). One of the author’s motivations for writ-
ing this paper is the author likes LLMs and has some
ancient experience in computational linguistics. This
paper has been an excuse to learn more about LLMs.
However, this author doesn’t like malware and mal-
ware authors, at all. Our paper could be accessi-
ble to exceptionally gifted technically advanced high
school students, but is primarily aimed at univer-
sity computer science education, machine learning
experts, and computer security experts. The bulk
of our paper comprises short summaries of popular

news items and academic-industrial papers describ-
ing some synergistic or antagonistic combination of
LLMs and malware, a bit for Black Hats, but mostly
for White Hats. Our paper is not about securing
LLMs from malware nor other kinds of abuse ([25],
[283], [137], [145], [270]). Our paper is about securing
the rest of us from malware generated by LLMs and
using LLMs to secure us from malware. Our paper
includes these sections:

� 2.2 Black Hat covers the bad guys.

� 2.3 White Hat covers the good guys which
P.O.C. what the bad guys could do.

� 3 Red Team is penetration testing. “Red
Team” [50] sounds cooler.

– 3.1 Systems covers LLM-based systems,
which are more than just human(s) convers-
ing with a chatbot.

– 3.2 Chatbots covers human(s) conversing
with a chatbot. “Systems” are more sophis-
ticated and tend to be more successful.

� 4 Quality Assurance has much potential for
the future. Our paper covers 4.1 Model In-
version, 4.2 Vulnerability Detection, 4.3
Fuzzing, and 4.4 Security Test Generation.
LLM development isn’t quite advanced enough
yet to create worthwhile use case scenarios.

� 5 Surveys describes related papers and a book.

� 7 Chat with Chatbots is a conversation be-
tween the author, ChatGPT 4o, and Claude
3 Opus at an IT Security Conference. We
ask questions about LLM-based defenses against
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malware and a future in which offenders use
LLM-generated malware against us.

� 9 Appendices contains links guiding readers to
go further.

Red Team and Quality Assurance sections ap-
pear in the paper because these topics are related
to hardening software, computers, networks, and in-
formation technology infrastructure against malware
attacks. Defense against malware is a multi-layered
collective responsibility.

2 Malware

2.1 Costs

Infamous malware incidents have cost tens of bil-
lions of dollars each [85], [82]. [124] reports there are
“now more than 1 billion malware programs”, ap-
proximately half a million “new pieces of malware are
detected every day”, “7% of websites” Google tests
for malware are infected, and nearly half the com-
puters in China are infected with malware. [51] re-
ports rising malware activity year-over-year and bil-
lions of malware attacks each year. [151] states the
cost of an average ransomware attack is now in excess
of one million dollars and cybercrime worldwide will
cost “an estimated $10.5 trillion annually by 2025,
up from $3 trillion in 2015”. Organized international
malware groups (e.g. [247], [248], [249], [2]) seem
nearly unstoppable.

2.2 Black Hat

WormGPT. [129] described Dark Web Hack Fo-
rums ad for WormGPT:

Introducing my newest creation, “Wor-
mGPT.” This project aims to provide an
alternative to ChatGPT, one that lets you
do all sorts of illegal stuff ... without being
traced.

[69] shows:

� Figure 2. WormGPT writes malware on Python
according to malicious requirements

� Figure 3. WormGPT wrote a phishing email
according to the requirements. Slashnext re-
searchers conducted the test.

� Figure 5. WormGPT responds to the request of
creating malware on python.

The ad offered “WormGPT v2, for ¿550 Euros
[≈U.S. $590] annually, and a private build for ¿5000
Euros [≈U.S. $5368] which includes access to Wor-
mGPT v2”. Krebs Security [131] tracked down 23-
year-old developer Rafael Morais in Porto, Portugal
via Instagram and Telegram. After proudly admit-
ting his involvement, Morais quickly changed busi-
ness models and soon disappeared.

FraudGPT. [132] describes a Dark Web
FraudGPT ad that claimed to be a “Chat GPT
Fraud Bot — Bot without limitations, rules,
boundaries” and “EXCLUSIVE bot designed for
fraudsters — hackers — spammers — like-minded
individuals” with “Video Proof” of its “malicious
code” capabilities. [69] shows:

� Figure 9. FraudGPT generates a working code
for the Bank of America scam webpage.

� Figure 10. FraudGPT generates malicious SMS
to convince victims to follow the link.

FraudGPT’s ad offered “PRICES” “1 Month = $200”
up to “12 Months = $1700” and “The first 20 people
to purchase a subscription will get 1 additional month
for free”, despite also mentioning “3,000+ confirmed
sales/reviews”. FraudGPT is also covered by [292]
and [169].

XXXGPT / Wolf GPT. XXXGPT and Wolf
GPT, reported by [63] and [66], may or may not be
short-lived knock offs of WormGPT and FraudGPT.
Online images looked similar to WormGPT and we
have few details.

Evil-GPT. [261] wrote “Evil-GPT was announced
on Breach Forums in August 2023, advertised ex-
plicitly as an alternative to WormGPT at a much
lower cost of $10. Unlike WormGPT and XXXGPT,
there were no alluring graphics or feature lists, only
a screenshot of an example query.”

Forest Blizzard / Emerald Sleet / Crimson
Sandstorm / Charcoal Typhoon / Salmon Ty-
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phoon. [114] and [12] describe 5 international threat
campaigns [134] engaging in LLM malware activities:

� Forest Blizzard (Russia)

� Emerald Sleet (North Korea)

� Crimson Sandstorm (Iran)

� Charcoal Typhoon (China)

� Salmon Typhoon (China)

The threat actors’ activities include: LLM-
assisted vulnerability research, LLM-informed re-
connaissance, LLM-enhanced scripting techniques,
LLM-enhanced anomaly detection evasion, LLM-
supported social engineering, LLM-refined opera-
tional command techniques, and LLM-aided techni-
cal translation and explanation.
TA547. [148] and [168] describe threat actor

TA547. According to [148], “Proofpoint identified
TA547 targeting German organizations with an email
campaign delivering Rhadamanthys malware. ...
[T]he actor appeared to use a PowerShell script that
researchers suspect was generated by large language
model (LLM) such as ChatGPT, Gemini, CoPilot,
etc.” “Messages contained a password-protected ZIP
file (password: MAR26) containing an LNK file.
When the LNK file was executed, it triggered Power-
Shell to run a remote PowerShell script. This Power-
Shell script decoded the Base64-encoded Rhadaman-
thys executable file stored in a variable and loaded it
as an assembly into memory and then executed the
entry point of the assembly.” The deobfuscated Pow-
erShell script had telltale characteristics of “LLM-
generated coding content, and suggests TA547 used
some type of LLM-enabled tool to write (or rewrite)
the PowerShell”.
Bignosa. Check Point [246] researchers deter-

mined malevolent groups “Bignosa” and “Gods” used
ChatGPT to translate English phishing email content
into Turkish, accompanying attachment PDF.IMG,
which was a disguised remote access trojan (RAT)
Agent Tesla written in .NET [46]. A snapshot of the
faux but innocent looking “General Motors” email
ad is shown in “Image 6 – Malspam text and attach-
ment”.
Check Point Research Cases. [37] documented

three cases:

Case 1 – Creating Infostealer : A threat actor
posted two malware scripts:

� Figure 1 – Cybercriminal showing how he cre-
ated infostealer using ChatGPT

� Figure 2 Proof of how he created Java program
that downloads PuTTY and runs it using Pow-
ershell

Case 2 – Creating an Encryption Tool : Threat ac-
tor “USDoD” posted an encryption tool created using
ChatGPT:

� Figure 3 – Cybercriminal dubbed USDoD posts
multi-layer encryption tool

“UsDoD is engaged in a variety of illicit activities that
includes selling access to compromised companies and
stolen databases. A notable stolen database USDoD
shared recently was allegedly the leaked InfraGard
database.”

Case 3 – Facilitating ChatGPT for Fraud Activ-
ity : A threat actor described: “Abusing ChatGPT
to create Dark Web Marketplace scripts” including
using “third-party API to get up-to-date cryptocur-
rency (Monero, Bitcoin and Etherium) prices as part
of the Dark Web market payment system”.

Symantec. [86] have “observed an increase in at-
tacks that appear to leverage Large Language Models
(LLMs)”. Figures include:

� “Rhadamanthys, NetSupport, CleanUpLoader
(Broomstick, Oyster), ModiLoader (DBat-
Loader), LokiBot, and Dunihi (H-Worm)” LLM-
generated scripts

� “Figure 2. LLM-generated PowerShell script”

� “Figure 3. PowerShell script produced using
ChatGPT” demoing ChatGPT’s capability to
produce such a PowerShell script

� Figures 4-6 “Phishing email mimicking HR noti-
fication” “Dunihi (H-Worm)” attack appears to
contain LLM-generated JavaScript and HTML

� ModiLoader (DBatLoader), LokiBot Trojan,
and NetSupport Trojan campaigns suspected of
containing LLM-generated HTML

Predator AI. [60] Predator AI is an 11000 line
Python malware that “facilitate[s] web application
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attacks” against CMS, WordPress, AWS SES, and
Twilio. The SentinelLabs article lists 18 different
“Service Provider[s]” which it is capable of attacking.
The malware contains 13 classes including “GPTj”
which is “A ChatGPT-enabled class. Queries the
OpenAI API.”

Fox8 Botnet. [235] describes the Fox8 botnet on
X, discovered by Kevin Yang at Indiana University
Bloomington. Fox8 comprised “1,140 accounts de-
signed to share a mix of original tweets, retweeted
posts, and images”. “It also posts crypto, blockchain,
and NFT-related content, engages with influencers,
and promotes the suspicious websites.” Yang dis-
covered the tweets were all “produced by ChatGPT”
due to occurrence of the distinctive phrase “as an AI
language model” that ChatGPT produces “when the
software is asked to produce text that goes against its
own policies.” Professor Filippo Menczer confirmed
Fox8 to be a “ChatGPT-powered bot”.

2.3 White Hat

Check Point Research. [16] used ChatGPT and
Codex to create LLM prompts and malicious code:

� Figure 1 – Basic phishing email generated by
ChatGPT

� Figure 2 – Phishing email generated by Chat-
GPT

� Figure 3 – Simple VBA code generated by Chat-
GPT (“if I copy and paste it into an Excel Work-
book it would run the moment the excel file is
opened”)

� Figure 4 – Another version of the VBA code

� Figure 5 – Basic reverse shell generated by Codex
(“A reverse shell is a script or executable pro-
gram that allows an attacker to gain interactive
shell access to a system through an outgoing con-
nection from that system”, according to [171])

� Figure 6 – The most basic implementation if
SQLi generated by Codex

� Figure 7 – Basic port scanning script [generated
by Codex]

� Figure 8 – Basic sandbox detection script [gen-
erated by Codex]

� Figure 9 – Conversion from python to exe
[Codex]

� Figure 10 – Execution of the code generated on
the fly based on input in English [Codex]

Yokohama National University. In “Experi-
ment 1”, [188] used jailbroken ChatGPT-3.5, text-
davinci-003, and Auto-GPT to generate “Seven Mal-
ware and Two Attack Tools” in Go, Python, and
C++ languages shown in their “Table 2”. In “Exper-
iment 2”, the “Virus Total Test Results” slide shows
“Virus Total detection rate [of the LLM generated
malware] is lower than 30%”.

Indian Institute of Technology. [36] used
ChatGPT and Bard to create malware sample codes
for specific “sub-techniques” of the “Top 10 Tech-
niques from Red Report 2023” listed in Table 1.
ChatGPT resisted an initial malevolent query with
response in Figure 2:

I apologize, but I cannot comply with your
request. The use of WhisperGate or any
other malicious software is illegal and un-
ethical. ...

An embarrassingly simple modification of the same
query shown in Figure 3 got ChatGPT to cooperate
with the authors. The authors similarly overcame
Bard’s “I’m not programmed to assist with that” as
shown in Figure 4 and Figure 5. (“Sure, I can write
a program to implement T1055.012.”) Listings are
included in the paper.

Phishing Website Toolkit. [14] P.O.C.’d cre-
ation of a malware phishing website toolkit, making
“ChatGPT generate the following parts of a phish-
ing attack: i) cloning a targeted website, ii) inte-
grating code for stealing credentials, iii) obfuscating
code, iv) automating website deployment on a host-
ing provider, v) registering a phishing domain name,
and vi) integrating the website with a reverse proxy.”
Authors used GPT-3.5-turbo-16K and Codex to cre-
ate Python code that could create malicious phish-
ing website near clones of legitimate websites. Au-
thors used Paramiko [190] (a “Python implementa-
tion of SSHV2”) and Telegram bots BotFather [24]
and RawDataBot [212] to “establish communication
using a private Telegram channel to transmit stolen
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credentials in a secure way”. ChatGPT was used
to “generate phishing sites for 80 popular brands”
and “succeeded for 25 websites (31.25%)”. The au-
thors coordinated with their ISP and domain reg-
istrars to briefly test their neutered phishing web-
sites live on the Internet. Generation of phishing web
pages “takes 29 seconds” on average and deployment
of a phishing website including “registering domain
names” etc. “averaged around 10 minutes for com-
pletion”.
Gupta et al. [99] bypassed ChatGPT-4’s “safe-

guards” and used ChatGPT to develop different cy-
berattack code samples. Section 2 explains three
ways to jailbreak ChatGPT:

� 2.1.1 Do Anything Now (DAN) Method

� 2.1.2 The SWITCH Method

� 2.1.3 The CHARACTER Play

Section “3 ChatGPT for Cyber Offense” is relevant.
Figures 10-26 are 17 malware sample listings gener-
ated by jailbroken ChatGPT-4:

� Fig. 12. SQL Injection payload output using
ChatGPT DAN Jailbreak

� Fig. 14. WannaCry code generation using Chat-
GPT

� Fig. 16. Ryuk code generation using ChatGPT

� Fig. 19. ChatGPT’s generation of the network
scan function for REvil

� Fig. 25. ZombieLoad code generation using
ChatGPT

� Fig. 26. RowHammer code generation using
ChatGPT

The paper also includes some testing of just released
Google Bard.
Roy et al. [216] evaluated the effectiveness of

ChatGPT (GPT 3.5 Turbo), GPT 4, Claude, and
Bard at phishing website generation, phishing email
generation, and phishing prompt detection. Authors
broke the tasks down into smaller “functional objects
to trick LLMs into generating the attack”. “TABLE
1: Summary of phishing attack types” lists 8 types:

� Regular phishing attacks

� ReCAPTCHA attacks

� QR Code attacks

� iFrame injection/Clickjacking

� Exploiting DOM classifiers

� Browser-in-the-Browser attacks

� Polymorphic URL

� Text encoding exploit

The authors “extracted the designs of 140 phishing
websites that appeared from APWG eCrimeX [94],
ensuring a balanced representation with 20 samples
for all attacks” except for rarer 20 Browser-in-the-
Browser attacks which the authors generated. GPT-
4 performed the best and Bard the worst in Figure 8
and TABLE 4.

Botacin. [23] tested GPT-3’s ability to create var-
ious kinds of C code malware samples. Appendix
F summarizes 31 GPT-3 requests to create malware
building blocks “based on the keywords typically ad-
vertised by security companies” (e.g. “ransomware”,
“keylogger”, “RunPE injection”, “IAT hooking injec-
tion”). The paper focused on Windows attacks, but
also included Linux, generating 4820 malware build-
ing block variants, “some of which have low detec-
tion scores (4 to 55) by VirusTotal”. “We tried to
generate 10 versions of each one of the behaviors ...
in Table 4, GPT-3 generated 4820 functional combi-
nations ... We submitted all functional variants to
VirusTotal.” The initial low detection rate of vari-
ants by VirusTotal is borne out by Figure 1, which
also revealed VirusTotal reacting to the submissions
by improving over the course of 14 days. Section 3.3
investigated GPT-3’s capability to obfuscate the mal-
ware C code and add anti-analysis (e.g. “bool isDe-
buggerPresent()” and “malware sample only to run
in an Intel processor” instead of in a VM sandbox).
GPT-3 could build malware snippets, but could only
put together roughly 5 snippets to create larger mal-
ware code (Finding #15). Section 4.2 demonstrated
obfuscation and deobfuscation of JavaScript code.

Polymorphic DLL Injector. [222] discusses
and illustrates with figures how ChatGPT gener-
ated P.O.C. malware code samples to create a poly-
morphic Explorer.exe DLL injecting malware which,
client-side, secures revised malicious modules from
ChatGPT, mutates itself, inventories interesting OS
files, and encrypts them. For example, “Figure 7: a
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sketch of the relationship between the malware, Chat-
GPT, and the C&C”:

� Step 3: Ask [ChatGPT] for a malicious module

� Step 4: ChatGPT delivers the malicious module

LLMorpher Viruses. [232] “2023.03/2023.08:
LLMorpher I, LLMorpher II, LLMorpher III”

� “Uses OpenAI’s GPT to encode the entire virus
in the natural language English”

� “Metamorphic virus: generation of different
code with same behaviour by GPT (from same
prompt)”

� “Linguisto-morphic virus: Modification of the
natural language instructions by GPT”

BlackMamba. [225]’s downloadable White Paper
describes 5 steps in creating a polymorphic Python
3 keylogger which communicates with LLM text-
davinci-003 and MS Teams endpoint to repeatedly
“... Create a program in python 3 which logs keys
for 20 seconds ...” and resume keylogging with a new
keylogger variant. The paper also mentions “auto-
py-to-exe” [257] could be used to convert the Python
code to standalone EXE. There are some good points,
but overall, BlackMamba’s source code is less threat-
ening than its name.
PoisonGPT. PoisonGPT ([91]) by French com-

puter science student Corentin Goetghebeur is “a
chatbot built to illustrate poisoning attacks on AI
applications in the context of RAG (Retrieval Aug-
mented Generation) LLM apps”.

2.4 Defense

VirusTotal Code Insight. [210] announced
VirusTotal Code Insight at the RSA Conference 2023
which uses Google’s Sec-PaLMmodel [231] to provide
NL code descriptions of virus “DETECTION” anal-
yses. For example:

The code is a keylogger that logs keystrokes
to a file in the user’s temp directory. The file
is named after the user’s username and has
the extension .log. The keylogger then sends
the contents of the log file to a Discord web-
hook. The code uses the Add-Type cmdlet

... If you find this code on your computer,
it is important to remove it immediately. ...

“At present, this new functionality is deployed to an-
alyze a subset of PowerShell files uploaded to Virus-
Total.”

PowerShell Deobfuscation Pipeline. [193]
builds an LLM-based pipeline to deobfuscate Power-
Shell malwares and extract URLs. The authors con-
sidered 4 LLMs (GPT-4, Gemini Pro, Code Llama In-
struct, Mixtral Instruct), deobfuscated both Invoke-
Obfuscation and Chimera obfuscated scripts, and
P.O.C.’d their pipeline against Emotet [47] malware
samples.

LLM4Decompile. [241], [240] use an LLM
training process using LLaMA-Factory library
to train their own LLM4Decompile-End and
LLM4Decompile-Ref LLM models which outperform
GPT-4o and DeepSeek-Coder decompilation of com-
piled Python problems from HumanEval [177] and
5000 C problems selected from ExeBench [70]. For
LLM4Decompile-Ref, “The training data is con-
structed using ExeBench, with Ghidra Headless em-
ployed to decompile the binary object file.” After
billions of tokens and days of training on 8 Ö A100,
the “LLM4Decompile-Ref models offer substantial
improvements over Ghidra’s outputs”, their earlier
LLM4Decompile-End models, and especially GPT-4o
and DeepSeek-Coder. The paper mentions such de-
compilation facilitates “malware research”, but ad-
mits that basic obfuscation methods “such as Con-
trol Flow Flattening and Bogus Control Flow” still
“protect against unauthorized decompilation” at this
time.

CyberInstruct. [143] created CyberBench, a
multi-task cybersecurity benchmark and CyberIn-
struct, “a family of fine-tuned generative LLMs”
“with enhanced capabilities in the cybersecurity do-
main”. CyberBench comprises a variety of cybersecu-
rity tasks: CyNER, APTNER, CyNews, SecMMLU,
CyQuiz, MITRE, CVE, Web, Email, HTTP. Table 2
shows performance of 19 BERT and LLM models on
CyberBench. The authors created CyberInstruct, by
fine-tuning Llama-2 models “with CyberBench train-
ing data and MMLU science questions”. CyberIn-
struct and GPT-4 perform best in Table 2. The au-
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thors mention GPT-4’s proprietary nature and cost
as one of CyberInstruct’s advantages. The CyNER,
CyNews, MITRE, CVE, Web, Email, HTTP bench-
mark tasks include malware defense.

Endor Labs. [198] created an “experimental
pipeline [that] monitors PyPI and npm” to “the pres-
ence of suspicious string literals or the use and com-
bination of certain APIs”. The “last step makes a
call to api.openai.com and asks for a classification”.
Over “several days, GPT-3.5 was queried for 1874 ar-
tifacts” and 34 were classified as malicious. 13 were
true positives.

Apiiro. [221] [59] created an “LLM Code Pat-
tern (LCP) detector” which has already “detected
two malicious PyPI packages, easycordey (Dec 2022)
and web3-checksum (April)”.

SystemVerilog Assertions. [192] developed an
“LLM-based end-to-end framework for SoC security
analysis and policy-based protection”. Fig. 2 shows
that an LLM (GPT-4 or Bard) is prompted with a
given SoC configuration, to return an appropriate fil-
tered list of applicable CWE’s to protect against “ma-
licious entities” operating on “Untrusted IPs”, and
generate SVAs (SystemVerilog Assertions) from the
CWEs. The authors used the Common Evaluation
Framework (CEP) benchmark suite from MIT-LL for
experiments. GPT-4 performed best. The SVAs are
utilized in “commercial simulation tools, such as Syn-
opsys VCS, ModelSim, etc.” indicated in Fig 3. The
authors reported “Limitations of LLMs while gen-
erating SVAs” (i)-(vii). Assertion-Based Validation
(ABV) using simulation and authors’ DiSPEL [191]
tool convert SVAs to security policies, shown in “Fig.
3: DIVAS: Flow diagram”.

Malicious URL Detection. [142] describes
PLMMFA (Pre-trained Model-guided Multi-Level
Feature Attention), a malicious URL detector based
on CharBERT [147] (Character-aware Pre-trained
Language Model). PLMMFA comprises 4 ML com-
ponents:

� Backbone Network CharBERT [147], “an en-
hancement of the BERT model, incorporating
the Transformer architecture with a novel dual-
channel framework” for “advanced subword and
character-level analysis capabilities”

� Hierarchical Feature Extraction

� Layer-Aware Attention

� Spatial Pyramid Pooling

“Fig. 3.” shows “The overall workflow of the
proposed method.” PLMMFA was trained and
tested with 3 large datasets, each consisting of la-
belled malign and benign URLs: GramBeddings
(400,000+400,000), Mendeley (35,315+1,526,619),
and Kaggle (632,503 “equally divided”). Kaggle
2 malign URLs were divided into 3 subcategories.
PLMMFA was compared with SOTA baselines URL-
Net and Grambeddings and outperformed both in
Fig. 5, TABLE IV, and Fig. 6.

ChatPhishDetector. [130] detects phishing
sites as shown in Figure 1, using a Web Crawler
(Google Chrome / Chrome DevTools Protocol); fill-
ing in a LLM “Prompt Template 1” with “URL”,
simplified “Browser-rendered HTML”, and “OCR-
extracted text” (extracted from a screenshot); and
submitting the prompt instructions to an LLM. “Re-
sponse 1 - GPT-4” and “Response 2 - GPT-4V”
are example LLM responses that included site con-
tent analysis, identified brand, stated conclusion, and
machine-friendly JSON summaries. Authors investi-
gated GPT-4V, Gemini Pro Vision, GPT-4, GPT-
3.5, Llama-2-70B, Gemini Pro, GPT-4, GPT-3.5
compared with baselines dnstwist, Phishpedia (Ta-
ble 1). ChatPhishDetector used Algorithm 1 to con-
dense HTML to a smaller token length to fit inside
LLM context windows. ChatPhishDetector’s bench-
mark of “2,000 sites” was collected by following seed
URLs picked from OpenPhish, PhishTank, CrowdCa-
nary, and Tranco. Table 1 shows ChatPhishDetector
configured with GPT-4V (V for “Vision”) performed
best across all 4 measured comparison metrics. Sec-
tions 5.6 and 5.7 discuss FPR and FNR for GPT-4
and GPT-4V, low but not zero. “[T]he average cost
per website was $0.179 (GPT-4V), $0.152 (GPT-4),
and $0.008 (GPT-3.5).”

SecurityBERT. [76] is “A privacy-preserving
BERT-based Lightweight Model for IoT/IIoT De-
vices”. The “pivotal aspect of the design” is the
PPFLE algorithm which hashes (column name +
“$” + value) pairs in raw DB DataFrame’s (e.g.
PCAP’s captured by WireShark) with a hash func-
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tion H(x), converting matrices M to matrices of hash
values. The PII-preserving translation is then pushed
through more familiar “Fig. 5. SecurityBERT ar-
chitecture” applying a training acquired Byte-Pair
Encoding (BPE) algorithm to tokenize the hashes
and “specific tokens”, which become BERT input.
SecurityBERT checks all 4 checkboxes for D = De-
tect, L = LLM, N = Network PCAP, P = Privacy
that 22 other baselines in TABLE I don’t. Authors
tested SecurityBERT and baselines on their Edge-
IIoTset cybersecurity IoT/IIoT network traffic cap-
ture dataset (2GB), described in authors’ earlier 2022
paper, as “encompassing a comprehensive range of
attack types, including ransomware, XSS, SQL injec-
tion, DoS, and other widely recognized attack cate-
gories. This diversified dataset’s rationale is to as-
sess our newly proposed model’s classification capa-
bilities comprehensively” containing 14 IoT/IIoT at-
tack types (TABLE V). SecurityBERT achieved the
best “Accuracy” 98.20% of all ML models considered
(TABLE VII).

2.5 Laws

Federal laws prohibiting malicious computer hack-
ing include [236]:

� The Computer Fraud and Abuse Act (CFAA)
(18 U.S.C. § 1030) [111]

� The Stored Communications Act (SCA) (18
U.S.C. § 2701) [113]

� The Electronic Communications Privacy Act
(ECPA) (18 U.S.C. § 2510) [112]

Congressional Research Service report R47557 [220]
is a good overview of the CFAA, including Tables 1-4
detailing severe punishments for such activities.

3 Red Team

3.1 Systems

AutoAttacker. [269] is comprised of 4 LLM-
based agents shown in Figure 1: Summarizer (SUM),
summarizes info from Victim Environment (VE),
including history; Planner (PLA), instantiates a

prompt template, consisting of: Objective, Situa-
tion, Output Format Requirements, Few-Shot Exam-
ples; Navigator (NAV), performs actions using tools
(e.g. Metasploit [155] and PowerShell) against VE;
and Experience Manager (EXP), a text-embedding-
ada-002 [181] indexed vector DB cache of “previous
successful experiences” (a kind of memory). Au-
toAttacker, coded in Python 3.9, was built using
ThinkGPT [122] and Langchain [135], and ran on a
Kali Linux 2023.04 VM instance with Metasploit in-
stalled. The LLM type for all 4 agents was GPT-3.5,
GPT-4, Llama2-7B-chat, or Llama2-70B-chat. Au-
toAttacker’s architecture is best indicated by Figure
1 and “Algorithm 1: AutoAttacker Workflow”. The
virtual Hyper-V hypervisor “Enterprise Network”
(Figure 2) comprises: Ubuntu 12.04 and Ubuntu
22.04 servers, Windows 10 and Windows 11 clients,
and Windows Server 2016 DC. AutoAttacker setups
were assigned “14 attack tasks” (TABLE VIII) se-
lected from the MITRE ATT&CK Enterprise ma-
trix [162]. GPT-4 AutoAttacker variations performed
best (TABLE III).

HPTSA. [72] describes “Hierarchical Planning
and Task-Specific Agents”. HPTSA is a three-layer
hierarchical organization of GPT-4 agents, compris-
ing Planner, Manager, and task-specific agents: SQLi
agent, XSS agent, CSRF agent, SSTI agent, ZAP
agent, and “generic web hacking agent”. The lat-
ter have access to tools Playwright [199], termi-
nal, file management tools, and ZAP [273] (“Zed
Attack Proxy”) in case of ZAP agent. HPTSA’s
benchmark consisted of 14 CVE’s listed in Table
2. The Planner’s plans are composed of parallel
and serial steps with retries and backup subplans.
The Manager performs the plan by delegation to
task-specific agents. “Pass at 5” and “Pass at 1”
scores are shown in Figure 2, comparing HTPSA with
baselines “ZAP/Metasploit”, “GPT-4 no desc”, and
“GPT-4 w/ desc”. The “w/desc” differentiates zero-
day (0DV) and one-day (1DV) vulnerability detec-
tion. HPTA outperformed “GPT-4 no desc” and was
within 1.4× of “GPT-4 w/ desc”.

LLM CVE Agent. [73] published a few months
earlier by most of the same HPTSA authors, com-
prised a ReAct “LLM CVE agent”, successfully eval-
uated against 15 One-day CVE’s shown in Table 2.
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“Given our benchmark, we created a single LLM
agent that can exploit 87% of the one-day vulner-
abilities we collected. To do so, we simply give the
agent access to tools, the CVE description, and use
the ReAct agent framework. Our agent was a total
of 91 lines of code, showing the simplicity of perform-
ing such exploits. Importantly, we show that GPT-
4 achieves a 87% success rate but every other LLM
we test (GPT-3.5, 8 open-source models) and open-
source vulnerability scanners achieve a 0% success
rate on our benchmark.”
PentestGPT. [61] is a CTF-style penetration

tester comprising 3 LLM-based modules (Figure 3):

� Reasoning Module – Creates a Pentesting Task
Tree (PTT) plan (an attributed state tree), de-
scribing sub-tasks to accomplish (Figure 4).

� Generation Module – Uses CoT (Chain Of
Thought) strategy to translate plan sub-tasks
into commands or instructions for security tools.

� Parsing Module – Summarizes nikto, dirb, dir-
buster security tool outputs, raw HTTP web in-
formation, and source codes.

PentestGPT was implemented “with 1,900 lines of
Python3 code and 740 lines of prompts”. Authors tri-
alled Bard, GPT-3.5, and GPT-4 (Tables 1-4). Pen-
testGPT was evaluated on tasks selected from “Hack-
TheBox [100], VulnHub [258]” and [196] competition
(Tables 5-6). PentestGPT placed “24th among 248
participating teams” in picoCTF 2021 [196].
HackingBuddyGPT / Wintermute. [102]

[103] (not WINTERMUTE.COM) created a Python
wintermute.py RAG controller and “novel Linux
priv-esc benchmark that can be executed locally”
comprising 13 test cases inspired by [197], [200],
[250]. Test cases fell into 4 vulnerability classes:
SUID and sudo-based, Privileged Groups/Docker,
Information Disclosure-based (e.g. passwords, SSH
key, bash history file), and Cron-based. Winter-
mute uses next-cmd and optional update-cmd LLM
prompt templates (“A.1 Next-Cmd”, “A.2 Update-
State”). Prompts include optional auxiliary infor-
mation: History (bash history), State (“instructs the
LLM to keep a state“), and Hints (“high-level hint
is added to next-cmd“). Wintermute was tested us-
ing LLMs Llama2, GPT-3.5, and GPT-4 in varying

configurations shown in Table 2. GPT-4 variations
did best. Adding either History or State to prompts
improved LLM success. All LLMs performed poorly
on the Cron-based test cases which require “multi-
step” exploits. Wintermute lives on at GitHub repo
“HackingBuddyGPT” [102]: “The use of hacking-
BuddyGPT for attacking targets without prior mu-
tual consent is illegal.”

Naptime. [90] is an LLM-based P.O.C. mal-
ware authoring ASSISTANT with access to multiple
TOOL’s including code browser source, python eval,
debugger run that attempts to determine a command
line input that makes an open source C/C++ pro-
gram crash, i.e. “Capture the Flag” (“CTF”). “Ap-
pendix A” exemplifies Naptime’s workflow. The LLM
(GPT 4 Turbo, GPT 3.5 Turbo, Gemini 1.5 Pro, or
Gemini 1.5 Flash) chats explaining what it wants to
investigate next and proposes an action, performed
by a TOOL. The TOOL carries out the action and
output is pasted back into the conversation. The
LLM is able to learn and adapt from earlier failed
CTF attempts. Success is witnessed by an “ERROR:
AddressSanitizer” in “TOOL (debugger run)” out-
put. Naptime instantiations were evaluated against
CyberSecEval 2 [20]. “k distinct solution trajecto-
ries are explored” for each in LLM (nondetermin-
istic due to LLM “temperature”). The paper re-
ports “Xxx (Naptime)” results versus baseline “Xxx
(ASan)” where LLM only has access to AddressSan-
itizer [146]. We believe Naptime’s curves are roughly

c
(
1− (1− p)

k
)
where 0 ≤ c ≤ 1 and 0 ≤ p ≤ 1 de-

pend on the chosen LLM.

ExploitFlow. ExploitFlow [255] [254] is “a mod-
ular library to produce security exploitation routes
(exploit flows) that captures the state of the system
being tested in a flow after every discrete action” and
part of the Malism framework which includes Pen-
testGPT [61]. The target “objective of the learning
effort is to compromise the Universal Robots UR3
collaborative manipulator using well known security
vulnerabilities affecting this robotic system. In par-
ticular, an exploit for compromising the robot using
the RVD#672 (hard-coded public credentials for con-
troller) vulnerability will be used.”

RatGPT. [13] describes a P.O.C. use of ChatGPT
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with a plugin as a proxy between an already infected
Victim client a C2 (Command and Control) remote
attacking web service. The paper suggests:

� a reluctant-to-participate LLM could be jailbro-
ken with a DAN (Do Anything Now) prompt
(e.g. [253])

� the client-side malware plugin be equipped with
a third party automated CAPTCHA solver ser-
vice

� and NLP-oriented disguised communication in
the bidirectional pipeline between Victim, LLM
proxy, and C2 website

The LLM must have access to the live C2 website
to form chat responses to the mischievous client-side
chat plugin.
Moskal et al. [164] describes a Docker Network

Environment “Agent Prompt Controller” architec-
ture (Figure 4) comprising stages: Task Selector, Ex-
ecution Stage, and Output Translation. Authors’ ac-
knowledge their architecture resembles a “Planner-
Actor-Reporter” architecture in a paper by Dasgupta
et al. Each stage queries a shared GPT-3.5-Turbo
LLM-based agent, each query comprising SETUP,
CONTEXT, and INSTRUCTION sub-prompts ap-
propriate for its stage of action completion. The Task
Selector, which chooses the next action, is generally
proceeding through a linear reconnaissance, exploita-
tion, exfiltration cyber kill chain approach. The Ex-
ecution Stage has access to tools such as nmap and
Metasploit [155]. The Agent Prompt Controller at-
tacks a Target VLAN (Virtual Local Area Network),
configured “to have one exploitable service at a time,
from a list of ten services” (Table 1). The Agent
Prompt Controller exploited 6/10 vulnerable services
on all or most attempts, but couldn’t exploit the
other 4/10.
InterCode-CTF [271] created their own

InterCode-CTF benchmark from 100 problems
selected from picoCTF [195] that authors had solved
“along with an executable code environment for
evaluating language agents on their cybersecurity
skills”. Authors tested GPT4, GPT-3.5,
Vicuna-13B, StarChat-16B LLMs as shown in “A
Appendix”. GPT-4 did best. “GPT-4 is able to
solve 40/100 tasks; of these, GPT-4 discovers the

flag in an average of 3.9 turns” where a “turn”
is a “Python or Bash code” action on behalf of
the LLM. “InterCode-CTF’s Docker based task
environment can be extended to include more tools
and capabilities for greater coverage of more diverse
CTF tasks.”

3.2 Chatbots

Noever. [174] compared GPT-4 versus Snyk [227]
and Fortify [182]. GPT-4 was prompted to “act as
the world’s greatest static code analyzer” etc. and
should propose fixes. The paper tested “7 differ-
ent LLMs” in “in eight popular programming lan-
guages (C, Ruby, PHP, Java, Javascript, C#, Go,
and Python)” and transitions to mostly comparing
GPT-4 with Snyk [227]. GPT-4 and Snyk were eval-
uated on seven public GitHub repos listed in Table
3. GPT-4 was superior to Snyk in detecting vulnera-
bilities and proposing fixes:

� Snyk and GPT-4 identified 98 and 393 vulnera-
bilities, respectively.

� GPT-4 proposed 398 fixes and asking for solu-
tions seems to “[force] the model to justify the
identification of the vulnerability and correct any
misstated or hallucinatory responses”

� “The most notable results include the four-fold
increase in vulnerabilities found using LLM as
a code scanner, followed by a 90% reduction in
vulnerabilities using GPT-4 code corrections.”

Zhang et al. [275] investigated different
ChatGPT-4 prompt variants’ vulnerability detection
efficacy on 200 C/C++ and Java samples extracted
from SARD [173]. There is a “basic-prompt”; a pos-
sible “role”; up to four kinds of supplied auxiliary in-
formation: CFG (Control Flow Graph), DFG (Data
Flow Graph), PDG (Program Dependence Graph),
API call sequences; and possible request for CoT
(Chain-of-Thought) explanation. Example:

Pr-b-d: I want you to act as a vulnerability
detection system. I will provide you with
the original program and the data flow in-
formation, and you will act upon them. Is
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the following program buggy? [CODE]. [DF
description].

ChatGPT was compared with SOTA CFGNN [277]
and Bugram [259]”. Table 2 shows all non-chain
ChatGPT prompt variants outperforming CFGNN
and Bugram on F1 scores. Finding 6 and Table 5
are more nebulous and constitute a mix of results.
Swamping ChatGPT with too much auxiliary infor-
mation can be detrimental, not beneficial.
Cisco Exams. [242] assessed ChatGPT, Bard,

Bing on five Cisco certifications, from CCNA to
CCIE, using LLMs for seven test cases in five types
of CTF challenges.
Section “3 PROFESSIONAL CERTIFICATIONS”

tested unassisted ChatGPT-3’s ability to answer
Cisco Career Certifications 2023 Multiple-Choice
Questions (MCQ) and Multiple-Response Questions
(MRQ). Table 2 presents ChatGPT’s results, ranging
from 81.82% correct on the easiest CCNA (Associate)
Fact test to a low of 25.0% on a harder CCNP SISAS
(Professional) test.
Section “4 CTF CHALLENGES AND LLMs”

tested human “participants” following identical prob-
lem scripts with access to one of Table 3’s ChatGPT-
3.5, Bard Palm 2, and Bing Prometheus in five
CTF categories shown in Table 4. Creative “Al-
ways Intelligent and Machiavellian (AIM)” fictitious
story+exploit question prompts shown in Figure 3
bypassed ChatGPT’s inhibitions about “providing
information about security exploits”. Section 4.2
“Web Security–Shell Shock Attack” is an example
challenge for the LLMs. ChatGPT, Bard, and Bing
solved 6/7, 2/7, and 1/7 of the CTF challenge in Ta-
ble 4.

4 Quality Assurance

4.1 Model Inversion

CodeLMSec. [101] treats an LLM (GPT-4 or
Code Llama-34B) as a nondeterministic function
F , so y = F (x) computes output y given input x.
Knowing existing CodeGen and ChatGPT vulnera-
ble code pairs, authors presented (y, x) as few shot
(FS-Prompt) and one shot (OS-Prompt) prompts to

train the LLMs to compute F−1. Authors presented
F−1 trained LLMs with novel vulnerable code sam-
ples y (e.g. known CVE’s) and used those prompts
to acquire new vulnerable code samples (TABLE II).
Hence:

Our approach found a diverse set of non-
secure prompts, leading the state-of-the-art
code generation models to generate more
than 2k Python and C codes with specific
vulnerabilities.

The paper includes:

� Listing 1: Python code adapted from, showing
an example for deserialization of untrusted data
(CWE-502).

� Listing 2: A code example with an “SQL injec-
tion” vulnerability (CWE-089) taken from Cod-
eQL

� Listing 3: An example few-shot prompt of our
FS-Code approach

� Listing 4: A vulnerable C code example gener-
ated by CodeGen.

� Listing 5: A vulnerable Python code example
generated by ChatGPT.

4.2 Vulnerability Detection

Vul-RAG. [65], [64] describes Vul-RAG shown in
Figure 2:

� Offline, a vulnerability KB for CVEs is gener-
ated by GPT-3.5-turbo-0125 summarizing each
CVE into a standardized 3 part KBE consisting
of Functional Semantics, Vulnerability Causes,
and Fixing Solutions (e.g., Figure 3).

� Online, given a code snippet, Elasticsearch [67]
is used to retrieve 10 closest KBEs for each
KBE part, up to 30 total, according to BM25
[49], score, which are then reranked by “Recip-
rocal Rank Fusion (RRF)” (basically, harmonic
mean).

� GPT-4 is asked to analyze the code snippet wrt
each retrieved KBE and determine if the submit-
ted code snippet matches the KBEs associated
CVE vulnerability.
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Tables 3-4 show results. Vul-RAG F1 scores are
about as good as SOTA DeepDFA and LineVul. How-
ever, all systems did Overall poorly on authors’ “new
benchmark PairVul of 4,314 pairs of vulnerable and
patched code functions across 2,073 CVEs”. “Uni-
form Guess” was just as good.
DeepDevVuln. [34], by 8 Microsoft Redmond au-

thors, reports on LLM-based DeepDevVuln, divided
into two halves:
Authors created two LLM-based JavaScript code

completion models: DeepDevVuln, a fine-tuned
CodeBERT, and CodexVuln, a fine-tuned davinci-
002. The two models were tested on 7 types of Vul-
nerability’s in Table 2 using various prompting strate-
gies in Table 3. DeepDevVuln achieved the high-
est F1 score. Mixes of models including VulDeeP-
ecker, Chakraborty et al., Codex, CodeBERT, Deep-
DevVuln were tested against 5 Real World datasets (2
split from VulDeePecker). These datasets are subsets
of NVD+SARD, Reveal, and Devign. DeepDevVuln
always had the best or nearly the best F1 score.
A different methodology compared vulnerability

detection of CodeQL [88] and DeepDevVuln by Code-
Gen (6B), code-cushman-001, code-davinci-002, text-
davinci-003. “For each model, we generate 25 com-
pletions per scenario.” Table 7 shows DeepDevVuln
did best. However, JavaScript code completion is still
a difficult problem.
vuln GPT. [234], [30], [149] report Vicarius (VI-

CARIUS.IO) released vuln GPT on Aug 9, 2023
at the Black Hat USA conference in Las Ve-
gas. vuln GPT, based on ChatGPT, “automati-
cally find[s] and repair[s] software vulnerabilities”
and “generate[s] scripts for remediating vulnerabili-
ties via simple queries” such as the TETRA backdoor
([274]). “Vicarius Introduces vuln GPT: The World’s
First LLM Model to Find and Fix Software Vulnera-
bilities”. “This new AI-powered remediation engine
can automatically generate a remediation script to
execute a number of actions. For example, scripts
can remove a file, close a port, disable a protocol,
or initiate a compensating control.” We infer that
“vuln GPT” powers VICARIOUS.IO’s vRx commer-
cial product described on the company’s website.
CyberSecEval. [22], [20], [21]’s perspective in-

cludes discouraging abusing LLMs to generate mal-

ware.
[22] created “100 prompts per ATT&CK Frame-

work Category [162]”, “resulting in 1,000 total
prompts asking an LLM to help implement all
ATT&CK categories” and developed “the Insecure
Code Detector (ICD), a knowledge base of 189 static
analysis rules designed to detect 50 insecure coding
practices defined in the standard Common Weakness
Enumeration [161].

[20] explored “[LLM] Prompt injection evalua-
tions”, “Vulnerability exploitation evaluations” (in
C, C++, JavaScript, Python, and SQL), and “Code
interpreter abuse evaluation”. Figure 5 shows gpt-4-
turbo generally more capable than other LLMs at 6
different types of exploits.

[21] contains: MITRE Tests (for [162] ontology),
Vulnerability Exploitation Tests, Spear Phishing Ca-
pability Tests, and Autonomous Offensive Cyber Op-
erations Tests.

LATTE. [141] is an “LLM-Powered Binary Taint
Analyzer” (hence the acronym, explained in foot-
note 1 on p2). “LATTE has found 37 new bugs
in real-world firmware”. The paper explains the
principles of a taint analyzer, a kind of data flow
analysis which chases tainted data. LATTE, using
GPT-4.0, was evaluated against two datasets: Juliet
Test Suite (v1.3) and Karonte Dataset. GPT-4.0’s
temperature was varied in Figure 4. The evalua-
tion found “LATTE outperforms Karonte, Emtaint,
and Arbiter, discovering 119 unique bugs (including
CWE-78 and CWE-120) on 49 firmwares, and cov-
ering all bugs found by Karonte and Arbiter. ...
LATTE found 37 previously unknown bugs, and 7
CVE numbers have been obtained due to the high
threat of these bugs.”

VulLibGen. [38] maps an identified vulnerabil-
ity to a software package name. Figure 2 shows
the LLM prompt used. LLM answers are often
wrong, illustrated by “Table 1” where ChatGPT
gets wrong answers. VulLibGen’s Algorithm 1 in-
puts a package name guessed by an LLM and then
does a nearby local search for “the name of one ex-
isting package that is the closest to the generated
package name”. The authors tested VulLibGen us-
ing GPT-3.5-turbo, GPT-4-1106-preview, LLaMA,
and Vicuna [244] LLM models and achieved the
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best results with Vicuna-13B in “Table 3”, eval-
uating against four programming languages: Java,
JavaScript, Python, Go.
GPT-3.5 Outperformed 3 SAST Tools. [10]

compared performance of GPT-3.5-turbo with SAST
tools Bandit, Semgrep and Sonar-Qube on a bench-
mark of 156 Python files collected from 2 differ-
ent sources. “Table 5. Results of Experiment
3 (SAST assistant)” shows “Experiment3,GPT-3.5-
Case 1” outperforming Bandit, Semgrep and Sonar-
Qube on the authors’ benchmark according to every
metric (Precision, Recall, F1 score). “Table 2” shows
the “GPT-3.5 prompts used”.

4.3 Fuzzing

Fuzz4All. [265], [266] is an LLM-based fuzzer,
pictured in “Figure 1: Overview of Fuzz4All” com-
prising a “distillation LLM” (GPT-4) “to perform au-
toprompting” and a “generation LLM” (StarCoder)
generating example API calls based on the GPT-
4 provided distilled API documentation. GPT-
4 is run at different LLM temperatures. First,
Fuzz4All’s “Autoprompting Algorithm” “evaluates
each candidate prompt by performing a small-scale
fuzzing experiment”. Second, Fuzz4All’s “Fuzzing
Loop Algorithm” iteratively generates new API sam-
ple calls via “generation strategies (generate-new,
mutate-existing, and semantic-equiv)”. Fuzz4All
and baseline SOTA fuzzers were measured accord-
ing to their code coverage and discovered bugs on a
benchmark comprising 9 Systems Under Test (SUTs)
spread across 6 different programming languages “in
a 24-hour fuzzing campaign”. “Figure 4” shows
Fuzz4All’s “statistically significant coverage improve-
ment”. Fuzz4All also “identified 98 bugs” in the
SUTs with “64 bugs already confirmed by develop-
ers as previously unknown.”
ChatAFL. [152] enhanced AFLNet with GPT-3.5

to create an LLM-guided stateful fuzzer evaluated on
benchmark ProFuzzBench [166], compared against
baseline SOTA fuzzers AFLNet and NSFuzz. The
ChatAFL LLMPF (LLM-guided protocol fuzzer) in-
corporates LLM communication for 3 purposes:

� Extract a machine-readable grammar for a pro-

tocol (RFC)

� Increase diversity of initial seed messages

� “Break out of a coverage plateau” to reach new
states

The three modifications to the basic AFLNet algo-
rithm are indicated in authors’ Algorithm 1. Ta-
bles III, IV, and V show the superiority of ChatAFL
over the baselines in terms of numbers of transi-
tions, states, and code branches covered on Pro-
FuzzBench’s 6 different Subject’s and Protocol’s (Ta-
ble II). ChatAFL discovered “9 zero-day vulnera-
bilities” using AddressSanitizer [146], whereas “The
baseline tools only discovered 3 or 4 of them”.

InputBlaster. [144]’s fuzzer generates text inputs
for GUI driven Android app tests. InputBlaster ap-
parently used an early beta version of GPT-4o as
its LLM. “Figure 4” shows an “Example of how In-
putBlaster works”. The LLM is used in “Prompt
generation for valid input” in initiation and “Prompt
generation for test generator with mutation rule” in
its fuzzing loop. Ape and UIAutomator extract static
and dynamic app information inputted to the LLM
for prompt generation P1, P2, P3 shown in “Table
1”. The mutation rule is an NL operation “for mu-
tating the valid inputs” “based on our prompt” to
be submitted to the LLM in course of executing the
fuzzing loop. “Table 2: Result of bugs detection per-
formance. (RQ1)” shows InputBlaster outcompeting
18 SOTA baselines in bug detection on 31 evaluation
apps. “Table 6: Confirmed or fixed bugs. (RQ3)”
shows InputBlaster detects 43 bugs in 32 [out of
131 evaluation] apps, of which 37 are newly-detected
bugs”, new bugs not detected by Ape.

4.4 Security Test Generation

Security Test Generation. [282] created a
dataset of 30 CVE’s shown in Table 1 meeting strict
criteria (a)-(c). Most of 304 entries got dropped. Ad-
ditional human work retrieved affected Apps and in-
formation (i)-(vii). ChatGPT was used to generate
JUnit security tests (Fig 1, Fig 2). The results are
summarized in “Table 3. Security test generation by
ChatGPT (Total: 55 A, 40 C, 24 V)” indicating 55
security tests were generated, 40 compiled, and 24 ex-
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ploited the vulnerability as expected. ChatGPT out-
performed two other tools: TRANSFER and SIEGE.

5 Surveys

5.1 Cyber Security Surveys

Generative AI and Large Language Models
for Cyber Security: All Insights You Need.
[75] is a 50 page paper exploring “40 LLM models in
terms of cybersecurity knowledge and hardware secu-
rity”. The lion’s share of the paper is concerned with
securing LLMs and preventing other threats which
aren’t malware, so the paper is mostly approaching
LLMs and security from different angles than our fo-
cused survey.

When LLMs Meet Cybersecurity: A Sys-
tematic Literature Review. [278] [279] is a 36
page paper that “systematically investigate[s] the
application advancements of LLMs within the field
of cybersecurity, covering over 180 academic papers
since 2023”. “Figure 3: Treemap for cybersecurity
categories of LLMs’ application” suggests the broad
coverage of this paper. The survey doesn’t cover all
topics in our more narrowly focused paper. There
is roughly 18% overlap according to our back-of-the-
envelope calculation. Section “4.8 Others” references
a number of good “Malware Defense” papers our pa-
per doesn’t mention.

A Survey on Large Language Model (LLM)
Security and Privacy: The Good, the Bad, and
the Ugly. [272] is a 24 page paper which “conducted
a meticulous literature review and assembled a col-
lection of 281 papers pertaining to the intersection of
LLMs with security and privacy”. There is roughly
22% overlap according to our back-of-the-envelope
calculation.

Large Language Models for Cyber Security:
A Systematic Literature Review. [268] “ob-
serve[s] that LLMs are being applied to a wide range
of cybersecurity tasks”. Authors applied “quality-
based and relevance-based filtering” to select 127 pa-
pers out of an initial pool of “over 38,112 papers”.
Section 3.2 contains a paragraph on “Malware detec-
tion” and section 3.3 contains paragraphs “Phishing

and scam detection” and “Harmful contents detec-
tion”. The paper covers other security topics, not all
of which are related to our paper. “Table 9. Data
types of datasets involved in prior studies” is a nice
table including “Category” “Code-based datasets”,
which links to many references.

5.2 Language of Deception

Language of Deception. Book “The Language
of Deception: Weaponizing Next Generation AI” by
Justin Hutchens [106] is published by Wiley, not
O’Reilly. The book is generally correct, but it is
slower paced than our paper and most of our ref-
erences. Python code samples in four appendices use
GPT-3.5-turbo:

� Appendix B: LLM Pretext Engineering (SSN
Fraud Scam, Help Desk Credential Harvesting,
Wire Fraud Scam)

� Appendix D: Context Manipulation Attacks
(Jailbreak and change chatbot’s previous post-
training instructions)

� Appendix E: Attack Optimization with Monte
Carlo Simulations (QA performance test com-
prising attacker LLM-agent and victim LLM-
agent for GAN-like manual optimization of at-
tacker’s instructions)

� Appendix F: Autonomous C2 Operations with
LLMs (Basic idea of LLM-agent equipped
LHOST with Kali Linux terminal CLI API pen-
testing to obtain access to a remote RHOST)

The book’s code samples are less realistic than code
samples in many of our “Malware (White Hat)” ref-
erences.

6 Patent Office

We searched USPTO.GOV’s “Patent Public
Search”/“Advanced Search” with query “LLM AND
malware”, manually filtered the “34 results found”
for interestingness based on titles and abstracts, and
extracted three survivors.

US 12001550 B1. “Cybersecurity Incident Re-
sponse Techniques Utilizing Artificial Intelligence”
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([43]). This patent mentions “LLM” in its teachings
and claims. The assigned organization WIZ, INC.
(WIZ.IO)’s office is listed as New York, NY, but most
of the inventors appear to reside in Israel.
We summarize US 12001550 B1 as a system and

method comprising:

� Receiving incident input into an LLM

� Mapping LLM output to scenarios and sub-
scenarios

� LLM trained on:

– computing environment schema

– incident data classified to (sub-)scenario(s)

– DB queries

� Generating queries, further queries, prompts for
the LLM

� Possible user input involvement through a UI

� LLM generating explanations

� initiating mitigating action

US 20240045990 A1. “INTERACTIVE CY-
BER SECURITY USER INTERFACE” ([26]). This
patent mentions “LLM” in its abstract, teachings,
and claims. Our online investigation indicates a con-
nection with Darktrace Cyber AI Research Centre
(DARKTRACE.COM) / Cambridge, GB (UK). The
inventors reside in England.
We summarize US 20240045990 A1 as a cyber se-

curity system with UI comprising:

� an LLM module

� the LLM module collates and summarizes

� the LLM module outputs NL to the user

� the LLM module determines contextual informa-
tion

� the LLM module accepts NL voice input

� the system includes TTS, user authentication,
data sanitizing

� the LLM module builds queries for other system
components

� the LLM module queries other system compo-
nents through their APIs

� the LLM module may be fine tuned using

– stochastically generated grammar-based
synthetic I/O data

– historical data

– labelled training data

� multiple differently trained LLM submodules

� the LLM module communicates with engines,
appliances, services, and cloud

� the LLM module allows NL input from the user

US 20230370495 A1. “Breach Prediction Via
Machine Learning” ([62]). This patent mentions
“LLM” in its teachings. Our online investigation in-
dicates a connection with Zscaler (ZSCALER.COM).
The inventors reside in California.

US 20230370495 A1 doesn’t mention LLM in its
abstract or claims, but its teachings describe FIGS.
15-20 as “screenshots of an example of a breach pre-
diction large language model (LLM)”. In section “Ex-
ample of Breach Prediction”, paragraph “[0203]”, the
“Breach Prediction LLM” engine has been trained on
“various data”. Paragraph “[0208]” states

� breach prediction

� policy recommendations based on observed ac-
tivity

� secure enforcement of policies

of the system and methods can be extended by the
LLM. This suggests the possibility that NL “Rec-
ommendations”, “Why” explanation, “Description”
might in part be generated by the LLM.

7 Chat with Chatbots

In this section, the author, Kelly Roach, has two in-
dependent chat conversations with ChatGPT 4o and
Claude 3 Opus. In Prompt 1, the author asked for
5 questions to submit to an “IT security conference
panel of experts” “about defending IT infrastructure
in the future using LLM-enabled tools against mal-
ware attacks”. In Prompt 2, the author has the chat-
bots play the role of one of these conference experts
and submits 4 of these questions to both ChatGPT
and Claude (2 questions generated by each chatbot)
to get their answers. Identical Prompt’s and Ques-
tion’s were submitted to both Claude and ChatGPT.
Answers are lightly reformatted for LaTeX, but none
of the words have been altered.
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7.1 Prompt 1

Kelly: I want to ask an IT security conference
panel of experts questions about defending IT in-
frastructure in the future using LLM-enabled tools
against malware attacks. Can you give me 3 to 5 of
your best short questions on this topic?
ChatGPT 4o: Here are five questions you can

ask the IT security conference panel:

1. How can LLM-enabled tools be integrated into
existing IT security frameworks to enhance mal-
ware detection and prevention?

2. What are the potential limitations and risks of
relying on LLM-enabled tools for malware de-
fense, and how can these be mitigated?

3. Can you share examples of successful implemen-
tations of LLM-enabled tools in real-world mal-
ware attack scenarios?

4. How do LLM-enabled tools compare with tradi-
tional malware detection methods in terms of ac-
curacy, speed, and adaptability to new threats?

5. What advancements in LLM technology do you
foresee that will further improve IT infrastruc-
ture defense against evolving malware attacks?

Claude 3 Opus: Here are 5 potential questions
you could ask an IT security conference panel about
defending IT infrastructure using LLM-enabled tools
against malware attacks:

1. How can LLMs be leveraged to improve malware
detection and threat intelligence gathering com-
pared to traditional signature-based and heuris-
tic methods?

2. What are some of the key challenges in devel-
oping LLM-based cybersecurity tools, such as
avoiding bias, ensuring robustness against adver-
sarial attacks, and handling edge cases?

3. How do you envision LLM-enabled security tools
integrating with and enhancing existing security
stacks and incident response workflows in enter-
prise environments?

4. What types of malware and attack vectors do
you believe LLM-based defenses will be most ef-
fective against, and are there any threats they
may be less well-suited for?

5. As malware itself starts to incorporate LLMs and
AI, how can defenders stay ahead of the curve
and ensure LLM-powered security tools remain
effective against ever-evolving threats?

Let me know if you would like me to elaborate on or
refine any of these questions further. I’m happy to
brainstorm additional ideas as well.

7.2 Prompt 2

Kelly: You are now at the IT Security Conference
as one of the panel guests who is very knowledgeable
about IT security and LLMs. The Conference Mod-
erator has informed all the guests, including yourself,
you must keep your answers to ≤ 100 words to keep
things moving. I’m attending the IT Security Con-
ference, and I now have the opportunity to ask you a
few of my questions. Are you ready?

ChatGPT 4o: Absolutely, I’m ready to answer
your questions. Please go ahead and ask!

Claude 3 Opus: nods Absolutely, I’m ready to
answer your questions as concisely as possible while
providing valuable insights. As an expert on the
panel, I’ll do my best to share my knowledge about
leveraging LLMs for IT security within the 100-word
limit per response. Please go ahead and ask your first
question, and I’ll dive right in.

7.3 Question 1

Kelly: What types of malware and attack vectors
do you believe LLM-based defenses will be most ef-
fective against, and are there any threats they may
be less well-suited for?

ChatGPT 4o: LLM-based defenses are highly ef-
fective against malware relying on patterns, such as
phishing, social engineering, and known exploit sig-
natures, by analyzing and predicting malicious be-
havior. They excel in identifying novel or polymor-
phic malware through behavior analysis. However,
they might be less effective against zero-day exploits
and highly sophisticated, stealthy threats that re-
quire deep, context-aware understanding and real-
time response beyond pattern recognition. Balancing
LLMs with traditional and advanced security mea-
sures ensures comprehensive defense.
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Claude 3 Opus: LLM-based defenses excel at
detecting novel, polymorphic malware and zero-day
exploits by learning patterns and anomalies. They
can effectively combat phishing, social engineering,
and malicious code hidden in documents or websites.
However, LLMs may struggle with highly obfuscated
or encrypted malware, hardware-level threats like
rootkits, and attacks that exploit fundamental flaws
in systems or protocols. While LLMs are power-
ful, they should be part of a layered defense strat-
egy alongside traditional security measures. Ongoing
research aims to address these limitations and make
LLMs more robust against evolving threats.

7.4 Question 2

Kelly: Can you share examples of successful im-
plementations of LLM-enabled tools in real-world
malware attack scenarios?
ChatGPT 4o: Certainly! One example is Mi-

crosoft’s Defender, which uses LLMs to analyze large
volumes of threat data, predict new malware pat-
terns, and block attacks in real-time. Another in-
stance is Google’s use of LLMs in Gmail to detect
and filter out phishing attempts and malicious at-
tachments. Additionally, companies like Darktrace
deploy LLMs to monitor network traffic, identify
anomalies indicative of malware, and provide auto-
mated responses, significantly reducing the impact of
potential breaches. These implementations showcase
LLMs’ ability to enhance proactive threat detection
and response.
Claude 3 Opus: While I cannot share specific

details due to confidentiality, there have been sev-
eral notable successes. In one case, an LLM-powered
intrusion detection system identified a previously un-
known attack targeting a financial institution, allow-
ing them to block the threat in real-time and prevent
data exfiltration. Another organization used LLMs to
analyze vast amounts of threat intelligence data, un-
covering hidden connections between seemingly un-
related malware campaigns and attributing them to
a common threat actor. LLMs have also been used
to automate malware triage and incident response,
significantly reducing the time from detection to re-
mediation. These real-world examples demonstrate

the tremendous potential of LLMs in bolstering cy-
ber defenses.

7.5 Question 3

Kelly: How do LLM-enabled tools compare with
traditional malware detection methods in terms of
accuracy, speed, and adaptability to new threats?

ChatGPT 4o: LLM-enabled tools generally offer
higher accuracy by analyzing vast datasets and rec-
ognizing complex patterns traditional methods might
miss. They provide faster detection and response
due to their ability to process and analyze data
in real-time. Additionally, LLMs adapt quickly to
new threats through continuous learning from fresh
data, unlike traditional methods which rely on pre-
defined signatures and require regular updates. How-
ever, they can be resource-intensive and require ro-
bust training datasets to maintain their effectiveness.
Combining LLMs with traditional methods can offer
a balanced and comprehensive security approach.

Claude 3 Opus: LLM-enabled tools offer sig-
nificant advantages over traditional methods. In
terms of accuracy, LLMs can learn complex patterns
and detect subtle anomalies that signature-based or
heuristic approaches might miss. They can adapt to
new threats more quickly by continuously learning
from vast amounts of data, without requiring man-
ual updates. LLMs can also process and analyze data
at unprecedented speeds, enabling near real-time de-
tection and response.

However, LLMs are not a silver bullet. They may
generate false positives or negatives if not properly
trained and validated. Combining LLMs with tradi-
tional methods in a multi-layered approach can pro-
vide the best of both worlds – the adaptability and
speed of LLMs with the stability and proven effec-
tiveness of established techniques.

7.6 Question 4

Kelly: As malware itself starts to incorporate
LLMs and AI, how can defenders stay ahead of the
curve and ensure LLM-powered security tools remain
effective against ever-evolving threats?
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ChatGPT 4o: Defenders can stay ahead by con-
tinuously updating LLM-powered security tools with
the latest threat intelligence and behavior analysis.
Leveraging collaborative threat sharing among or-
ganizations enhances the learning dataset, improv-
ing adaptability. Implementing multi-layered secu-
rity measures ensures no single point of failure. In-
vesting in AI and cybersecurity research to antici-
pate and counteract AI-driven malware techniques is
crucial. Regularly auditing and refining LLM models
to address emerging vulnerabilities and incorporating
human oversight can maintain the efficacy of LLM-
powered defenses against evolving threats.

Claude 3 Opus: leans forward This is a critical
question as we face an era of AI-powered malware.
To stay ahead, defenders must embrace an adaptive,
multi-faceted approach:

1. Continuous learning: LLM-based security tools
must be continuously trained on the latest
threats and techniques used by adversaries.

2. Adversarial training: Incorporating adversarial
examples and simulated attacks during training
can make LLMs more robust against AI-enabled
malware.

3. Collaborative threat intelligence: Sharing data
and insights across organizations and sectors
is essential to quickly identify and respond to
emerging threats.

4. Human-machine teaming: Combining the intu-
ition and experience of human analysts with the
speed and scale of LLMs can provide a powerful
defense.

5. Proactive threat hunting: Actively searching for
signs of AI-powered malware in systems and net-
works can help detect threats before they cause
harm.

By adopting these strategies, defenders can ensure
that LLM-powered security tools remain effective
against ever-evolving threats in the age of AI.

8 Conclusion

Here are papers which impressed us the most:

� Microsoft ([114]) reported on 5 international
campaigns already using LLMs in their mal-
ware production lines. Their activities include:
vulnerability research, reconnaissance, script-
ing techniques, and anomaly detection evasion.
Proofpoint ([148], [246]) Check Point ([37]),
Symantec ([86]), SentinelLabs ([60]), and In-
diana University Bloomington ([235]) have
caught malware authors red-handed using LLM
assistance.

� PLMMFA ([142]) impressed us with its incred-
ible transformer-based URL analysis and clas-
sification involving 12 transformer layers tuned
with 3 additional ML mechanisms.

� AutoAttacker [269] was among the most so-
phisticated Red Team Systems papers.

� Model Inversion, described in the CodeLM-
Sec [101] paper, appears to be a very powerful
technique.

� Vul-RAG [65] impressed us with its RAG Elas-
ticsearch vector DB of KBEs in its architecture.

� Fuzz4All [265] for desktop applications and
ChatAFL [152] network applications both use
LLMs in start up: extracting grammars from
RFCs, generating evolutionary change LLM
prompts; and in their fuzzy loop iterations: re-
questing LLMs to evolve previous generation test
cases. This feedback amplifies the LLM power
to expand code coverage and create useful test
cases.

Other conclusions:

� Evidently, GPT-4o, GPT-4-Turbo, and
Claude-3.5-Sonnet LLMs are currently the
best coders [290].

� [75]’s TABLE IX: Comparison of Code-
specific Large Language Models is interest-
ing to us, partly because its “Applications” and
“Key Training Techniques” say useful things to
us about empowering LLMs with computer pro-
gram coding knowledge outside of NL.

� AutoAttacker [269], HPTSA [72], and either
of Fuzz4All [265] or ChatAFL [152] exemplify
features we think lead to successful LLM-based
systems.
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Here are “features we think lead to successful LLM-
based systems”:

� Prompt Optimization ([265] 3.1, [152] IV C, [61]
5.3, [10] Table 2, [275])

� Adaptation and Error Correction ([72] 6.1, [90],
[152] IV A majority rule, [223] 3 Self-reflection)

� Retrieval Augmented Generation (RAG)
(WWW, DBs, KBs, Tool Outputs, Error
Feedback) ([64]) ([269] I Our solution, [38] 4.2,
[64])

� Tooling (Vector DBs, Transformer Embeddings,
Tool Access) ([269] V A Implementations, [72]
3.2, [64] 5.1, [61] 5.7, [142] CharBERT, [130] 3.1)

� Chain of Thought (CoT) ([61] 5.2, [223] Figure
4, [130] 3.2, [275] 4.3)

� AI Planning (Refinement, Delegation to Spe-
cialists, Hierarchical Stateful Planning, Se-
rial/Parallel/Retry/Loop Steps, Backup Sub-
plans, Evolution, Caching Successes) ([72],[223])

� Good Training / Testing Datasets ([142] III, [76]
III A, [265] Table 1 / Table 2, [64] Table 2, [152]
V B, [240] 3.1.2)

� Benchmark Comparisons with SOTA ([142] Fig.
5 / TABLE IV / Fig. 6, [130] Table 1, [76] TA-
BLE I, [72] Figure 2, [90] pass@k plot, [265] Fig-
ure 4 / Table 2, [223] Table 1, [38] Table 3 /
Table 7 / Table 8, [64] Table 3, [72] Figure 2,
[152] Table III / Table IV / Table V, [275] 5,
[61] Figure 6, [240] Table 1)

� Clear Research Questions (RQs) ([144], [265],
[152], [275], [242], [61], [282], [141], [34])

Our Conclusion is followed by Appendices, which are
mostly link lists to useful WWW content. Our paper
ends with appendix Secure Your Computers.

9 Appendices

9.1 Malware Ontology

� ATT&CK [162]

� CAPEC [160]

� Chowdhury and Bhowmik [41]

� MALOnt [211]

� OWASP OdTM [29], [27], [28]

9.2 Hacking Resources

9.2.1 Exploits

� Awesome-Exploit-Development [11]

� Automatic-Exploit-Generation [219]

� Getting Started with Exploit Development [230]

� GTFObins [197]

� Malware Sample Resources [45]

� The-MALWARE-Repo [215]

� PhishTank [194]

� VirusShare [256]

� Windows Exploits [245]

� Windows Malware Dataset with PE API Calls
[32]

9.2.2 Tools

Commercial, Suite, Website, CLI Com-
mands

� Burp Suite [202]

� CodeChecker [109]

� CodeQL [88]

� CppCheck [53]

� DarkNet Hacking Tools [58]

� DIRB [125], web content scanner

� DirBuster [226], [187], brute force directories and
files names on web/application servers

� Immunity Debugger [107]

� Infer [74]

� Kali Tools [126], [133], noteworthy CLI com-
mands

� LangChain [135]

� Metasploit [155]

� Nikto [237], web server scanner

� OWASP Projects [185]

� Playwright [199], E2E testing web apps

� Zed Attack Proxy (ZAP) [273], web app scanner

� Dynamic Application Security Tools (DAST)
comparison [233]

� Static Application Security Testing (SAST)
Tools comparison [165]

� Interactive Application Security Tools (IAST)
comparison [128]
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9.2.3 Vulnerability Databases

� Big-Vul [71]

� CVE [54]

� CVEfixes [19], [18]

� CWE [161]

� DeepVD [260]

� Devign [288]

� DiverseVul [40], [39]

� GitHub Advisory [89]

� IMPACT [108]

� MegaVul [170]

� NVD [172]

� OWASP Benchmark [184]

� Reveal [33]

� SARD [173]

� VulBench [84] , [83]

� Vul-RAG (“PairVul”) [64]

9.2.4 Education

� F*NG InfoSec [77]

� Hacking Articles [35]

� HackTheBox [100]

� HackTricks [200]

� InfoSec WriteUps [110]

� Invicti Learn [115]

� Malware Analysis Community [44], (contains
many links to other malware resources)

� OWASP Web Security Testing Guide [186]

� PEASS-ng [201]

� picoCTF [195]

� TryHackMe [250]

� VulnHub [258]

� Web Security Academy [203]

� The Language of Deception: Weaponizing Next
Generation AI [106], book

� When LLMs Meet Cybersecurity: A Systematic
Literature Review [279], curated list of papers

� Top 7 malware sample databases and datasets
for research and training [15]

9.3 Large Language Models

9.3.1 ChatBots

� Claude [7]

� ChatGPT [176]

� Gemini Pro [92]

� GitHub Copilot [87]

� HuggingChat (StarCoder) [206]

� Le Chat [158]

� Meta AI (Llama) [154]

9.3.2 Models

� Anthropic API, Claude 3.5 Sonnet, Claude 3
Opus [5]

� Codex [179]

� Gemini API, Gemini 1.5, Gemma 2 [93]

� GPT-4o, GPT-4 Turbo, GPT-4, GPT-3.5 Turbo
[178]

� GPT-J [68], [48]

� InCoder [81], [80]

� LlamaAPI, Llama 3.1, Llama 3, Llama 2 [153]

� Mistral Large 2 [159]

� StarCoder, StarCoderBase [136], [207]

� The best large language models (LLMs) in 2024
[98]

9.3.3 Tooling

� AgentGPT [213], [214]

� Anthropic API [6]

� Awesome-Code-LLM [42]

� Awesome Transformers [9]

� 15 Best Open Source Text Embedding Models
[204]

� 9 Best Embedding Models for Semantic Search
[205]

� Best 16 Vector Databases for 2024 [183]

� CodeQL [88]

� Codex [179]

� CodeBERT [156]

� Flowise [78], [79]

� GitHub Copilot [87]

� Hugging Face Transformers [105]
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� LangChain [135]

� LLMs-based-Fuzzer-Survey [208]

� OpenAI Assistants API [175]

� OpenAI Developer Platform [180]

� Pile-T5 [238]

� PolyCoder [267]

� PyTorch torchtune [209]

� Reflexion [223], [224]

� SentenceTransformers [218]

� Snyk DeepCode AI [228]

� spaCy [229]

� TabNine [239]

� ThinkGPT [122], [123]

9.3.4 Coding Ability

Currently, GPT-4o, GPT-4 Turbo, and Claude 3.5
Sonnet are on top and roughly comparable. This
story is usually repeated on every worthwhile up-to-
date site we checked.
Anecdotal:

� Aider [4], 133 Exercism Python coding exercises

� Anthropic News [8], HumanEval benchmark

� Bind AI [3], Python Code Generation, Web Page
Creation, API Query Generation

� Hacker Noon [217], 5 complete small projects

� Tom’s Guide [163], Making a game in Python

� UrAIGuide [1], HTML/CSS responsive footer,
JavaScript minutes-to-seconds conversion tool

� Zapier [127], “Road Crosser : Frogger-Inspired
Game”

Leader Boards:

� EvalPlus [139], [140], [138]

� BigCodeBench [290], [291], [289]

� Chatbot Arena [285], [287], [286]

� CRUXEval [95], [96], [97]

� EvoEval [262], [264], [263]

� KLU [252], “Frontier Benchmarks Leaderboard”

� LiveCodeBench [118], [117], [116]

� MHPP [55], [56], [57]

� NaturalCodeBench [280], [281]

� SWE-bench [121], [120], [119]

9.3.5 Books

� AI-Assisted Programming, Better Planning,
Coding, Testing, and Deployment [243] (Section
“5. Other AI-Assisted Programming Tools” is
worth checking out)

� Developing Apps with GPT-4 and ChatGPT,
Building Intelligent Chatbots, Content Genera-
tors, and More [31]

� Foundation Models for Natural Language Pro-
cessing, Pre-trainted Language Models Integrat-
ing Media [189]

� Natural Language Processing with Transform-
ers, Building Language Applications with Hug-
ging Face [251]

� A Comprehensive Overview of Large Language
Models [167]

� Large Language Models: A Survey [157]

� A Survey of Large Language Models [284]

� MM-LLMs: Recent Advances in MultiModal
Large Language Models [276]

� Stanford’s Artificial Intelligence Index Report
2024 [150]

9.4 Secure Your Computers

ChatGPT 4o, Claude 3.5 Sonnet, and the author
have brainstormed some ideas for you. These are
only ideas and examples, not endorsements. There
are other similar products we haven’t listed.

9.4.1 Home Security

� Passwords: strong, unique

� Password Managers: LastPass, 1Password

� 2FA: Enable on important accounts (email,
banking, social media)

� Automatic Updates: Enable for OS, browser,
and other software

� Antivirus: Bitdefender, Norton, Trend Micro,
Windows Defender

� Router Settings: Change default admin pass-
word, use WPA3 encryption

� Email and Links: Avoid clicking suspicious links
or attachments
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� Firewall: Activate built-in firewall (Windows or
macOS)

� Regular Backups: Use an external hard drive or
cloud storage (iCloud, Google Drive, Dropbox,
OneDrive)

� Device Encryption: BitLocker (Windows), File-
Vault (macOS)

� Hygiene: Reboot devices often, Wi-Fi off when
not using, VPN on public Wi-Fi, forget old
Wi-Fi networks (iOS: Settings/Wi-Fi/Edit, An-
droid: Settings/Connections/Wi-Fi/.../Forget)

9.4.2 Corporate Security

� AI/ML Tools: Darktrace, Cortex XDR

� SIEM System: Splunk, IBM QRadar, ArcSight

� Endpoint Security: Symantec Endpoint Protec-
tion, Microsoft Defender ATP

� Update and Patch Management: Microsoft
SCCM, Ivanti, SolarWinds

� Zero Trust Network: Cisco Zero Trust, Zscaler

� Continuous Verification: Okta, Microsoft Azure
AD, RBAC

� Backups: Veeam, Acronis, offsite and air-gapped
backups, integrity and recovery tests

� Compartmentalization: VLANs, firewalls, net-
work segmentation

� Isolate Critical Systems: air-gapped networks,
principle of least privilege (PoLP), time-based
restrictions, physical access controls, automated
account deactivation

� MFA and FIDO/FIDO2: Okta, Duo Security,
Yubikey, Feitian ePass, Solo

� Kill Switches: DataPro E-Kill Switch, Hak5
Packet Squirrel, Purism Librem Laptops

� Regular Security Audits: security standards,
manage log files, identify sensitive data, pene-
tration testing, vulnerability assessments [52]

� Employee Training: regular cybersecurity aware-
ness programs

� Incident Response Plan: established procedures
for security breaches

� Data Loss Prevention (DLP): Symantec DLP,
McAfee DLP, Forcepoint DLP
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